报 告 人: Jingguang Chen
报告题目:Tackling CO2 Issues by Chemical Conversion and by Reducing CO2 Emission
报告时间:2018年7月12日下午3:00
报告地点:新能源大楼附楼102会议室
报告人简介:
Jingguang Chen is the Thayer Lindsley Professor of chemical engineering at Columbia University, with a joint appointment as a senior chemist at Brookhaven National Laboratory.He is also a Thousand Talent professor at Tsinghua University.He is the co-author of over 20 United States patents and over 360 journal publications. He is currently the President of the North American Catalysis Society and an Associate Editor of ACS Catalysis.He received many catalysis awards, including the 2015 George Olah award from the American Chemical Society and the 2017 Robert Burwell Lectureship from the North American Catalysis Society.
报告摘要:
Emission of CO2, a byproduct from many industrial processes and power plants, has increased with increasing energy demand and growing population. Most of the efforts to chemically reduce CO2 requires the use of H2.This is not desirable because at present ~95% of H2 is generated from hydrocarbon-based feedstock, producing CO2 as a byproduct.In this talk we will first give a brief summary on CO2 conversion by H2 [1,2], followed by discussing our recent efforts in converting CO2 by light alkanes, such as ethane, via the dry reforming pathway to produce synthesis gas (C2H6 + 2CO2 → 4CO + 3H2) or the oxidative dehydrogenation route to generate ethylene (C2H6+ CO2→ C2H4+ CO + H2O). Using a combination of kinetic studies, in situ characterization and DFT calculations, we have identified several classes of catalysts that can activate both CO2 and light alkanes (C2-C4) [3] to achieve selective dry reforming or oxidative dehydrogenation.Finally, we will discuss alternative pathways for N2 transformations, which are the most CO2-emitting chemical processes [4].
[1] S. Kattel, P. Liu and J.G. Chen, “Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface”, Journal of the American Chemical Society, 139 (2017) 9739.
[2] S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez and P. Liu, “Active Sites for CO2 Hydrogenation to Methanol on Cu/ZnO Catalysts”, Science, 355 (2017) 1296.
[3] E. Gomez, S. Kattel, B. Yan, S. Yao, P. Liu and J.G. Chen, “Combining CO2 Reduction with Propane Oxidative Dehydrogenation over Bimetallic Catalysts”, Nature Communications, 9 (2018) 1398.
[4] J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al. “Beyond Fossil Fuel-Driven Nitrogen Transformations”, Science, 360 (2018) 873.