欢迎访问suncitygroup太阳集团网址!

MarK H. Rümmeli教授课题组在Advanced Materials(IF: 27.398)上发表研究论文

发布者:金霞发布时间:2020-11-12浏览次数:374

标题:Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale

作者:Huy Quang Ta, Alicja Bachmatiuk, Rafael Gregorio Mendes, David J. Perello, Liang Zhao, Barbara Trzebicka, Thomas Gemming, Slava V. Rotkin,* and Mark H. Rümmeli*

论文摘要:

In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize.  It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale.

原文链接:https://www.researchgate.net/publication/344367299

期刊名称:Advanced Materials



XML 地图