报 告 人: Shizhang Qiao
报告题目:Nanostructured Electrocatalysts for Water Splittingand Carbon Dioxide Conversion
报告时间:2018年12月25日上午10:00
报告地点:新能源大楼102室
报告人简介:Dr. Shi-Zhang Qiao is currently a professor (Chair of Nanotechnology) at School of Chemical Engineering of the University of Adelaide. His research expertise is in nanostructured materials for new energy technologies including electrocatalysis, photocatalysis, fuel cell, supercapacitor and batteries. He has co-authored more than 350 papers in refereed journals (over37,000 citations with h-index 98), including Nature, Nature Materials, Nature Energy, Nature Communications, J. Am. Chem. Soc, Angew. Chem., Adv. Mater..He has filed several patents and has attracted more than 12.0 million dollars in research grants from industrial partners and Australian Research Council (ARC).
Prof. Qiao was honoured with a prestigious ARC Australian Laureate Fellow (2017), ExxonMobil Award (2016),ARC Discovery Outstanding Researcher Award (DORA, 2013) and an Emerging Researcher Award (2013, ENFL Division of the American Chemical Society). He has also been awarded an ARC ARF Fellowship and an ARC APD Fellowship.
Prof. Qiao is a Fellow of Institution of Chemical Engineers (FIChemE),a Fellow of Royal Society of Chemistry (FRSC) and a Fellow of Royal Australian Chemical Institute (FRACI). He is currently an Associate Editor of Journal of Materials Chemistry A, and is a Thomson Reuters/Clarivate AnalyticsHighly Cited Researcher (Chemistry, Materials Science).
报告摘要:
Replacement of precious metal catalysts by commercially available alternatives is of great importance among both fundamental and practical catalysis research. Nanostructured carbon-based and transition metal materials have demonstrated promising catalytic properties in a wide range of energy generation/storage applications. Specifically engineering carbon with guest metals/metal-free atoms can improve its catalytic activity for electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), thus can be considered as potential substitutes for the expensive Pt/C or IrO2 catalysts in metal-air batteries and water splitting process. In this presentation, I will talk about the synthesis of nonprecious metal and metal free elements-doped graphene, and their application on electrocatalysis [1-6]. The excellent OER and HER performance (high catalytic activity and efficiency) and reliable stability indicate that new materials are promising highly efficient electrocatalysts for clean energy conversion. I will also present some research results of CO2 electrocatalytic reduction conducted in my research group [7,8].
References:
[1] H. Jin, S.Z. Qiao et al., Chem. Rev., 2018, 118(13), 6337-6408.
[2] Y. Zheng,S.Z. Qiao et al., J. Am. Chem. Soc. 2017, 139, 3336.
[3] C.X. Guo, S.Z. Qiao et al.,Angew. Chem. Int. Ed.2017, 56, 8539-8543.
[4] Y. Jiao, S.Z. Qiao et al., Nature Energy 2016, 1: 16130.
[5] T. Ling, S.Z. Qiao et al., Nature Communications 2016, 7: 12876.
[6] Y. Zheng,S.Z. Qiao et al.,J. Am. Chem. Soc. 2016, 138, 16174-16181.
[7] Y. Jiao, S.Z. Qiao et al., J. Am. Chem. Soc. 2017, 139, 18093.
[8] A. Vasileff, S.Z. Qiao et al.,Chem, 2018, 4, 1809-1831.