系列学术报告之一:Multifunctional materials for emerging technologies
报告题目:Multifunctional materials for emerging technologies
报告人:Federico Rosei
报告时间:2019年7月15日(周一)下午13:30
报告地点:新能源大楼215
报告人简介:
Federico Rosei received MSc (1996) and PhD (2001) degrees from the University of Rome “La Sapienza”. He held the Canada Research Chair (Junior) in Nanostructured Organic and Inorganic Materials (2003–2013) and since May 2016 he holds the Canada Research Chair (Senior) in Nanostructured Materials. He is Professor at the Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes (QC) Canada, where he served as Director from July 2011 to March 2019. Since January 2014 he holds the UNESCO Chair in Materials and Technologies for Energy Conversion, Saving and Storage.
Dr. Rosei’s research interests focus on the properties of nanostructured materials, and on how to control their size, shape, composition, stability and positioning when grown on suitable substrates. He has extensive experience in fabricating, processing and characterizing inorganic, organic and biocompatible nanomaterials. His research has been supported by multiple funding sources from the Province of Quebec, the Federal Government of Canada as well as international agencies, for a total in excess of M$ 16. He has worked in partnership with over twenty Canadian R&D companies. He is co-inventor of three patents and has published over 310 articles in prestigious international journals (including Science, Nature Photonics, Proc. Nat. Acad. Sci., Adv. Mater., Angew. Chem., J. Am. Chem. Soc., Adv. Func. Mater., Adv. En. Mat., Nanolett., ACS Nano, Biomaterials, Small, Phys. Rev. Lett., Nanoscale, Chem. Comm., Appl.Phys. Lett., Phys. Rev. B, etc.), has been invited to speak at over 300 international conferences and has given over 235 seminars and colloquia, over 55 professional development lectures and 40 public lectures in 45 countries on all inhabited continents. His publications have been cited over 12,000 times and his H index is 56.
He is Fellow of numerous prestigious national and international societies and academies, including: the Royal Society of Canada, the European Academy of Science, the African Academy of Sciences, the World Academy of Art and Science, the World Academy of Ceramics, the Academia Europaea, the American Physical Society, AAAS, the Optical Society of America, SPIE, the Canadian Academy of Engineering, ASM International, the Royal Society of Chemistry (UK), the Institute of Physics, the Institution of Engineering and Technology, the Institute of Materials, Metallurgy and Mining, the Engineering Institute of Canada, the Australian Institute of Physics, Honorary Fellow of the Chinese Chemical Society, Foreign Member of the Mexican Academy of Engineering, Foreign Member of the Bangladesh Academy of Sciences, Senior Member of IEEE, Alumnus of the Global Young Academy and Member of the Sigma Xi Society.
He has received several awards and honours, including the FQRNT Strategic Professorship (2002–2007), the Tan Chin Tuan visiting Fellowship (NTU 2008), the Senior Gledden Visiting Fellowship (UWA 2009), Professor at Large at UWA (2010–2012), a Marie Curie Post-Doctoral Fellowship from the European Union (2001), a junior Canada Research Chair (2003–2013), a senior Canada Research Chair (2016–2023) a Friedrich Wilhelm Bessel Award from the Alexander von Humboldt foundation (2011), the Rutherford Memorial Medal in Chemistry (Royal Society of Canada 2011), the Herzberg Medal (Canadian Association of Physics 2013), the Brian Ives lectureship award (ASM international / Canada Council 2013), the Award for Excellence in Materials Chemistry (Canadian Society for Chemistry 2014), the NSERC EWR Steacie Memorial Fellowship (2014), the José Vasconcelos Award for Education (World Cultural Council 2014), the IEEE NTC Distinguished Lectureship 2015–2016, the Lash Miller Award (Electrochemical Society 2015), the Chang Jiang Scholar Award (Government of China), the Khwarizmi International Award from the Iran Research Organization for Science and Technology (IROST), the Recognition for Excellence in Leadership from the American Vacuum Society (2015), the Selby Fellowship from the Australian Academy of Sciences (2016), the John C. Polanyi Award (Canadian Society for Chemistry 2016), the Outstanding Engineer Award (IEEE Canada 2017), the President’s Visiting Fellowship for Distinguished Scientists (Chinese Academy of Sciences 2017), the Sigma Xi Distinguished Lectureship (2018–2020), the Sichuan 1000 talent (short term) award, the Lee Hsun Lecture Award (2018), the Changbai Mountain Friendship Award (2018), the IEEE Montreal Gold Medal (2018), the APS John Wheatley Award (2019) and the Blaise Pascal Medal (European Academy of Science 2019).
报告摘要:
As the age of fossil fuels is coming to an end, now more than ever there is the need for more efficient and sustainable renewable energy technologies. This presentation will give an overview on recent developments in solar technologies that aim to address the energy challenge. In particular, nanostructured materials synthesized via the bottom–up approach present an opportunity for future generation low cost manufacturing of devices [1]. We demonstrate various multifunctional materials, namely materials that exhibit more than one functionality, and structure/property relationships in such systems, including new strategies for the synthesis of multifunctional nanoscale materials to be used for applications in photovoltaics, solar hydrogen production, luminescent solar concentrators and other emerging optoelectronic technologies. [2-31].
References
[1] F. Rosei, J. Phys. Cond. Matt.16, S1373 (2004);
[2] C. Yan et al.,Adv. Mater.22, 1741(2010);
[3] C. Yan et al., J. Am. Chem. Soc.132, 8868(2010);
[4] R. Nechache et al., Adv. Mater.23, 1724 (2011);
[5] R. Nechache et al., Appl. Phys. Lett.98, 202902 (2011);
[6] G. Chen et al., Chem. Comm. 48, 8009(2012);
[7] G. Chen et al., Adv. Func. Mater. 22, 3914 (2012);
[8] R. Nechache et al., Nanoscale4, 5588 (2012);
[9] J. Toster et al., Nanoscale5, 873 (2013);
[10] T. Dembele et al., J. Power Sources233, 93 (2013);
[11] S. Li et al., Chem. Comm.49, 5856 (2013);
[12] T. Dembele et al., J. Phys. Chem. C 117, 14510(2013);
[13] R. Nechache et al., Nature Photonics 9, 61 (2015);
[14] R. Nechache et al., Nanoscale8, 3237 (2016);
[15] R. Adhikari et al. Nano Energy 27, 265 (2016);
[16] H. Zhao et al., Small12, 3888 (2016);
[17] J. Chakrabartty et al., Nanotechnology27, 215402 (2016);
[18] D. Benetti et al., J. Mater. Chem. C4, 3555 (2016);
[19] K. Basu et al., Sci. Rep.6, 23312 (2016);
[20] Y. Zhou et al., Adv. En. Mater.6, 1501913 (2016);
[21] H. Zhao et al., Nanoscale8, 4217 (2016);
[22] L. Jin et al., Adv. Sci.3, 1500345 (2016);
[23] H. Zhao et al., Small 11, 5741 (2015);
[24] S. Li et al., Small11, 4018 (2015);
[25] K.T. Dembele et al., J. Mater. Chem. A3, 2580 (2015);
[26] H. Zhao et al., Nano Energy34, 214–223 (2017);
[27] S. Li et al., Nano Energy35, 92–100 (2017);
[28] G.S. Selopal et al., Adv. Func. Mater.27, 1401468 (2017);
[29] X. Tong et al., Adv. En. Mater.8, 1701432 (2018);
[30] H. Zhao, F. Rosei, Chem3, 229–258 (2017);
[31] J. Chakrabartty et al., Nature Phot.12, 271–276 (2018).
系列学术报告之二:贵金属纳米粒子催化剂的稳定策略
报告题目:贵金属纳米粒子催化剂的稳定策略
报告人:陈国柱
报告时间:2019年7月15日(周一)下午14:15
报告地点:新能源大楼215
报告人简介:陈国柱,教授,博士生导师,济南大学化学化工学院副院长,山东省优秀研究生指导教师,济南市化工学会理事。1999年毕业于曲阜师范大学,1999-2004年,担任中学教师;2004-2009年,山东大学硕博连读。2009-2013年,加拿大国立科学研究院博士后研究。2013年底加入济南大学。现主要从事催化剂的制备与表征,尤其是金属氧化物、双金属催化剂在异相催化中的性能评价及应用方面的研究。先后以第一作者或通讯作者在Chem.Commun., Adv. Funct.Mater., J. Mater. Chem. A , Journal of Catalysis 等杂志发表文章50余篇;主持国家自然科学基金面上项目、山东省自然科学基金面上项目等各类项目8项;为中国化学会、中国稀土学会、美国材料化学会、加拿大化学会会员等。为ACS Catalysis、ACS Nano、Applied Catalysis B: Environmental,Small,ACS Applied Materials & Interfaces等多个期刊进行邀请审稿。
报告摘要:工业催化中,提高贵金属粒子的抗烧结性能、抑制贵金属粒子在液相催化反应中的流失,是提升催化剂稳定性的关键。在前期工作中,我们课题组选择Ce(OH)CO3为前驱体,通过界面反应,设计了超小Pt粒子内嵌于CeO2纳米管催化剂,发现Pt与CeO2之间的紧密接触,相互抑制对方的烧结[1]。我们设计Ce(OH)CO3与NaOH和KMnO4溶液连续发生界面反应,获得了CeO2@Au@CeO2-MnO2三明治空心结构催化剂[2]。此外,我们通过分子筛为硬模板,将PtRu超小粒子内嵌于微介孔结构的碳材料中。此结构极大程度地稳定了贵金属粒子,而且在液相加氢反应中表现出优越的协同效应[3]。最近,我们借助原子层沉积技术(ALD),在CeO2/Pd粒子表面沉积氧化铝,并以氧化铝为牺牲模板,与对苯二甲酸反应,转化为CeO2/Pd@MIL-53(Al)三明治结构催化剂。此结构不仅抑制了Pd粒子的流失,而且MOF壳层材料可以调控液相加氢反应的选择性[4]。
参考文献:
1. Y. Wang, G. Song, et al., J. Mater. Chem. A., 2016, 4: 14148-14154.
2. G. Chen, Y. Wang, et al.,ACS Appl. Mater. Interfaces, 2018, 10: 11595-11603.
3. D.Gao, S. Li, et al., J. Catal., 2019, 370: 385-403.
4. T. Xu, K. Sun, et al., Chem. Commun., 2019, DOI: 10.1039/c9cc02727k.
系列学术报告之三:等离激元纳米结构的光响应增强原理及结构优化设计
报告题目:等离激元纳米结构的光响应增强原理及结构优化设计
报告人:张建明
报告时间:2019年7月15日(周一)下午15:00
报告地点:新能源大楼215
报告人简介:张建明,教授/江苏特聘教授,博导。2013年毕业于加拿大国立科学研究学院(INRS)能源、通讯与材料研究中心,获博士学位。2013年至2016年在加拿大魁北克大学蒙特利尔分校从事博士后研究,获魁北克省政府博士后研究奖第一名。2016年10月回国加入江苏大学化学化工学院任教。近5年在ACS Nano, Chemistry of Materials, Applied Catalysis B: Environmental, ACS Applied Interface and Materials, Chemical Communication等化学、材料类期刊发表论文近30篇,申请美国专利两项,并实现企业转化。2004年至2008年曾在日本信越(Shinetsu)化学工业株式会社和通用电气(GE)中国研发中心任研发工程师,具有较强的产品应用开发背景。
报告简介:等离激元(SPR)―半导体复合纳米结构是催化化学研究的热点之一。经典的等离激元材料纳米金与半导体材料复合后会在界面间产生较强的界面电磁场,从而增强SPR电子在界面上的转移传输能力,有助于催化活性的提高。在经典的Au‒TiO2体系中,由于材料本身固有的特点和Au‒TiO2相对单一的结合方式,单纯的Au‒TiO2界面近场增强效果很难得到更显著的提高。为了解决上述问题,我们提出了回音壁谐振腔增强和反射镜增强SPR吸收两种独特的物理模型,促进入射光的吸收和高效利用。我们在国际上率先提出了在Au‒TiO2等离激元光催化体系研究中引入回音壁谐振腔(WGM)的概念,通过对TiO2尺寸的简单变化实现了基于TiO2半导体光学谐振腔对Au‒TiO2界面近场和体系光吸收的高效调控,优化了WGM谐振与SPR耦合,产生了WGM‒SPR协同作用,从而显著提高了材料界面近场强度、对可见光的吸收和Au热电子产生能力。此外,我们通过在TiO2结构中引入基于纳米Ag的“反射镜”,成功构建了等离激元可见光反射(散射)采集―吸收集成体系,大大提高了等离激元催化材料对可见-近红外光的利用程度,提高了催化效率。